wp header logo 589

MRSEC Seminars | Events | Materials Research Science and Engineering Center – Brandeis University

Local News MP News

The MRSEC holds seminars presenting research at the frontier of Bioinspired Soft Materials. The seminars are targeted towards graduate students and other researchers in the field, although everyone is invited to attend. As the topic is highly interdisciplinary, seminars are designed to be accessible to a wide range of backgrounds.
The seminars take place on Thursdays at 4PM in Abelson 229 and on Zoom unless otherwise noted.
Organizer: Thomas Videbaek and Wei-Shao Wei (Rogers/Fraden Lab Postdocs)
October 27, 2022
October 19, 2022
Will Steinhardt, UC Santa Cruz
Many systems in geophysics, including faults, ice sheets, and hill slopes, are predominantly stable, but become unstable catastrophically, with severe societal consequences when they do. However, the behaviors of these systems are difficult to predict because they involve extreme spatial and temporal scales, accumulating stresses over decades or centuries, but nucleating failure processes in fractions of a second, which start at the micron-scale but lead to kilometers of deformation.
In this talk, I will discuss how I utilize techniques from soft matter physics to build scaled-down experiments that explore these complex problems in systems where a wide range of unique properties can be tuned to make otherwise impossible observations. I will present two examples: First, I will discuss how material heterogeneity leads to brittle fracture roughness, and show that the resultant morphology of a crack is, surprisingly, not dependent upon the details of the medium, but is instead controlled entirely by a single parameter: the probability to perturb the fracture front above a critical size to produce a step-like instability. In addition, we can directly observe the detailed three-dimensional dynamics of this process, and show how they are governed by simple topological rules. Second, using a scaled, transparent laboratory fault where slip at the interface can be directly imaged, I will show that fully confined, slow slip events in our system follow earthquake-like and frictional scaling, but display seismological stress drops that are invariant to not only normal stress, but also normal stress heterogeneity and to a large extent frictional properties. However, this invariance disappears as more ruptures are allowed to reach the edge of the system.
October 13, 2022
Michael Norton, Rochester Institute of Technology
Extensile active nematics built from reconstituted biopolymers are known for their intrinsically chaotic material flows and complex defect dynamics. In living active nematics, topological defects can take on functional roles that control cell fates. A striking example is the hydra microorganism, wherein defect patterns in the animal’s supracellular actomyosin network locate its limbs, mouth, and foot. Taken together, these observations from biology suggest the existence of a variety of feedback mechanisms between topological information and biochemistry and, more broadly, diverse strategies for sensing geometry and controlling form. Devising synthetic self-organized systems with comparable internal sensing dynamics would provide opportunities for increasing their functionality.
In this presentation, I ask: what is a simple chemical system that can sense the topology of a nematic? I show that a curvature-dependent reaction dipole is sufficient for creating a system that dynamically outputs topological information in the form of a scalar order parameter possessing local extrema coinciding with +/- 1/2 defects. I demonstrate the behavior of this system for stationary defects and in the presence of active hydrodynamic flows. I also show how this topology sensing system can underpin the construction of additional chemical processes that, in turn, shape the spatiotemporal structure of the active stress strength. I close with a discussion of generalizations to the model and possible experimental implementations of the system. 
September 8, 2022
August 15, 2022
Joonwoo Jeong, Ulsan National Institute of Science and Technology

Employing thermotropic nematic liquid crystals(LCs) as a continuous phase, we demonstrate that a pulsating bubble accompanying a topological defect can swim in the anisotropic fluid, despite the bubble’s symmetric shape and motion. The deformed nematic director field around the bubble provides the centrosymmetry breaking, and the surrounding LC’s nematodynamic response to the bubble’s pulsation breaks the time-reversal symmetry. Proposing a new mechanism that symmetry breaking solely in a fluid can realize symmetric and reciprocal swimmers, this study deepens our understanding of microswimmers in complex fluids.
If time allows, I will introduce other ongoing and non-LC projects in the Experimental Soft Matter Physics (SOPHY) group at UNIST, with bacteria, microfluidics, and X-ray/neutron imaging.

August 4, 2022
Anna Wang, University of New South Wales Sydney

The origins of life from simple molecules required several leaps in complexity. One of the critical structures that must have emerged was the protocell, a primordial cell that could propagate itself and its encapsulated genetic material, that could have eventually evolved into life as we know it.
One subfield of origins of life research focuses on how primordial cell membranes could have carried out the functions necessary for life, prior to the advent protein enzymes. This is fundamentally a soft materials problem. To answer this question, we work with a model system consisting of fatty acids owing to their ability to be synthesised abiotically [1,2]. The fatty acid membranes are highly dynamic compared to phospholipid membranes, leading to surprising outcomes such as the selective self-assembly of giant unilamellar vesicles [3]. The membranes also readily encapsulate RNA, have tunable permeability [4], and can store elastic energy that enables coupled growth and division [3], or even ‘endocytose’ near a nutrient pool.
I will end with a discussion of my interest in these vesicles as colloidal objects, and outstanding questions in the field.
[1] JM Gebicki, M Hicks, Chemistry and Physics of Lipids (1976)
[2] DW Deamer, RM Pashley, Origins of Life and Evolution of the Biosphere (1989)
[3] JT Kindt, JW Szostak, A Wang, ACS Nano (2020)
[4] LA Lowe, JT Kindt, C Cranfield, B Cornell, A Macmillan, A Wang, Soft Matter (2022)
May 19, 2022
David Amabilino, Autonomous University of Barcelona
A responsive supramolecular system comprising a bis-imidazolium gelator with a porphyrin and azobenzene photoswitch, both of which are anionic, self-assembles in mixtures of water and ethanol to give a gel which is responsive to light, where the porphyrin moves over micrometer scale distances when irradiated. The movement is instigated and characterized using total internal reflection fluorescence microscopy. The movement is shown to be a result of both photothermal effects and the trans-cis-trans switching of the azo molecule. In the absence of this switch, no motion occurs, but the system acts as a useful material for the generation of singlet oxygen. More recent results on the movement of molecules in these supramolecular systems will be included.
April 7, 2022
Andreas Bausch, Technical University of Munich
Living matter relies on the self organization of its components into higher order structures, on the molecular as well as on the cellular, organ or even organism scale. Collective motion due to active transport processes has been shown to be a promising route for attributing fascinating order formation processes on these different length scales. Here I will present recent results on structure formation in organoid systems, demonstrating how mechanical feedback between extracellular matrix, proliferation and cell migration drives structure formation process in these multicellular model systems. I will present results on the developmental phase of mammary gland and pancreatic ducal adenocarcinoma organoids.
February 21, 2022
Vida Jamali, University of California Berkeley
The motion and dynamics of nanoparticles and macromolecules in bulk and at interfaces is of fundamental importance in physics, chemistry, and biology. Liquid phase transmission electron microscopy (LPTEM) is an emerging technique which enables nanoscale visualization of the motion and dynamics of single nanoparticles in liquid environment with an unprecedented spatial and temporal resolution. However, in order to develop LPTEM as a tool for in situ single nanoparticle and macromolecule tracking, we first need to understand how the electron beam of a transmission electron microscope affects the particle motion in the liquid environment and near surfaces.
In this talk, I will present my recent work on studying the anomalous diffusive motion of a model system of gold nanorods dispersed in water and moving near the silicon nitride membrane of a commercial liquid cell in a broad range of electron beam dose rates. By leveraging the power of convolutional deep neural networks inspired by canonical statistical tests, I show that there is a crossover in diffusive behavior of nanoparticles in LPTEM from fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, to continuous time random walk at high dose rates, resembling diffusion on an energy landscape with trapping sites. I will then discuss how this work forms the foundation to study equilibrium and nonequilibrium dynamic processes for a broad range of nanoparticles, interfaces, and fluids in chemical and biological systems.
February 17, 2022
Davoud Mozhdehi, Syracuse University
Advances in recombinant DNA technology have expanded our ability to design and produce new protein-based materials with superior control over the biomacromolecule length, sequence, and structure for biomedical applications. Despite these positive attributes, protein-based materials still lack the chemical diversity of their synthetic analogues due to the limited repertoire of canonical amino acids. This limitation significantly restricts the available chemical design space (and thus the function) of protein-based biomaterials. In our quest to overcome this evolutionary constraint, we are inspired by a solution offered by Nature: leveraging specific chemical transformations to modify proteins with non-proteinogenic building blocks, a process called post-translational modification (PTM), which expands the diversity of the proteome by more than two orders of magnitude. 
Our focus is to reprogram unique PTMs to synthesize de novo designed hybrid biopolymers with programmable self-assembly. Our efforts are motivated to answer this fundamental question: What advanced properties can be encoded in protein-based materials by expanding the chemical design space from canonical amino acids to canonical and engineered PTMs? Answering this fundamental question paves the way for utilizing these hybrid biopolymers for new biomedical applications.
In this talk, I will focus on lipidation as a representative class of PTMs. Nearly one in five human proteins are post-translationally lipidated, and while the role of lipidation in regulating different facets of cell biology (e.g., signaling or membrane localization) has been well established, many mechanistic questions remain unanswered. These include the effects of lipidation on the energetics, conformations, and function of lipidated proteins. The progress is further slowed because the existing methods to synthesize LPs are challenging, laborious, and low-yield. 
To address these issues, we have genetically engineered prokaryotes to incorporate a diverse set of lipids into proteins, enabling the rapid generation of comprehensive libraries of model LPs with broad physicochemical diversity. With this library at hand, we used a diverse array of biophysical and soft-matter characterization techniques to correlate the LPs’ molecular syntax to emergent functional/material properties such as nano-assembly and viscoelasticity. This work provides insights into the LP’s design principles—a thermodynamically grounded understanding of the contribution of LP’s molecular syntax to their structure, assembly, and function. These principles contribute to a better understanding of the role of LPs in diverse biological mechanisms and will foster the development of next-generation recombinant biomaterials and therapeutics.
February 15, 2022
Tom Schroeder, Harvard University
Being alive involves existing out of thermodynamic equilibrium. Living organisms are full of gradients – in pressure, concentration, electrical potential, and so on. These gradients serve as driving forces that power useful transport processes and chemistry in a manner that is directed by highly specialized biological macromolecules and assemblies such as proteins and lipid membranes. Thanks to developments in the field of polymer science, we are now able to engineer synthetic macromolecules and assemblies with unprecedented precision and ease. Looking often to biology as a showcase of what is possible, I aim to leverage this polymer toolkit to develop useful new energy transduction processes. In this talk, I will discuss two projects in which aqueous electrolyte solutions held out of equilibrium were used to store energy that was subsequently released as heat or electricity. In each case, polymer-based hydrogels functioned simultaneously as physical reservoirs for the solutions and as kinetic barriers that modulated transport and energy release using nanoscale interactions between the polymer and the electrolyte.
In the first project, my colleagues and I took inspiration from electric eels, which contain meter-long organs responsible for generating their trademark discharges, to develop power sources composed entirely of soft, aqueous materials. Eels’ organs are essentially stacks of membranes that separate reservoirs containing solutions with different electrolyte compositions; in the “firing” state, the selectivity of each membrane produces a small electrical potential from the gradient it sustains, and the sum of these potentials can reach over 800 volts at open circuit. We were able to create a similar system that used hydrogels to behave as both electrolyte reservoirs and selective membranes; arrangements of this type can generate over 100 volts and power small devices. In the second project, I devised a means of patterning the fast, exothermic crystallization of metastable supersaturated salt solutions by encapsulating them in hydrogels with unpolymerized pathways. Upon nucleation with a seed, crystal growth through these pathways was significantly faster than in the polymerized bulk. The rapid release of latent heat in these areas produced spatially resolved heat maps which could be used to selectively activate downstream processes.

February 3, 2022
Layne Frechette, National Institutes of Health
January 24, 2022
Thomas Gaborski, Rochester Institute of Technology
Physiologically relevant in vitro tissue barrier and co-culture models are instrumental in investigating the mechanisms of drug delivery, leukocyte transmigration, cancer metastasis, and cell-cell communication during disease progression. Porous substrates are an indispensable part of many barrier model and tissue-on-chip platforms, but are largely treated as just another off-the-shelf component. Our laboratory has developed a variety of ultrathin and optically transparent nano- and micro-porous membranes to better to understand the ideal properties for these systems. We investigated engineering pore size and pore spacing to tune and control cell-substrate and cell-cell interactions. We found that reducing pore-pore spacing generally weakens cell-substrate interactions, as evidenced by fewer focal adhesions and reduced nuclear YAP in endothelial and mesenchymal stem cells, similarly to very soft substrates. On the other hand, endothelial cells on these same membranes have enhanced cell-cell interactions with more robust ZO-1 labeling, confirming a trade-off between cell-cell and cell-substrate interactions during monolayer formation. We further demonstrated that micron and submicron pore size influence early cell-substrate interaction and behavior in terms of migration and the associated extracellular matrix deposition and fibrillogenesis. These results suggest that membrane parameters can be engineered for specific cell types and tissues to promote improved in vitro barrier properties and potentially mimic softer tissue-like substrates.
January 20, 2022
Fengbin Wang, University of Virginia

Abstract: In this seminar, Dr. Wang will first talk about cryo-EM studies of microbial pilis, particularly their roles in pathologies (bacterial T4P), microbial ecology (archaeal T4P), and bioenergetics(cytochrome nanowires). However, the biomaterial and biomedical applications of those fascinating filaments are limited by the fact that none of the microbial pili can self-assemble, and they were put together by massive transmembrane secretion systems.
Inspired by biological helical assemblies, Dr. Wang will present a few collaborative projects about bringing self assembled peptide-based nanotubes into biomaterial and biomedical applications, and then further discuss the crucial role of cryo-EM in the rational designs of nanotubes.

SEMINARS 2016-2021
SEMINARS 2008-2015 (PDF)
 
NSF MRSEC Logo
A National Science Foundation sponsored Material Research Science and Engineering Center
Materials Research Science and Engineering Center
MS 057
Brandeis University
415 South Street
Waltham, MA 02453
781-736-2800
[email protected]

source

Leave a Reply

Your email address will not be published. Required fields are marked *